

MEEPHONEVANH VAXAYNENG

NGHIÊN CỨU TÍNH CHẤT PHÁT XẠ CỦA CHẤT PHÁT QUANG TRÊN MÀNG NANO BẠC ĐỂ XÁC ĐỊNH CÁC PLASMONIC HOẠT ĐỘNG

LUẬN VĂN THẠC SĨ VẬT LÝ

THÁI NGUYÊN - 2020

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM

MEEPHONEVANH VAXAYNENG

NGHIÊN CỨU TÍNH CHẤT PHÁT XẠ CỦA CHẤT PHÁT QUANG TRÊN MÀNG NANO BẠC ĐỀ XÁC ĐỊNH CÁC PLASMONIC HOẠT ĐỘNG

Ngành: Vật lý chất rắn Mã số: 8440104

LUẬN VĂN THẠC SĨ VẬT LÝ

Người hướng dẫn khoa học: PGS. TS. CHU VIỆT HÀ

THÁI NGUYÊN - 2020

LỜI CAM ĐOAN

Tôi xin cam đoan luận văn thạc sĩ "*Nghiên cứu tính chất phát xạ của chất phát quang trên màng nano bạc để xác định các plasmonic hoạt động*" là công trình nghiên cứu của riêng tôi dưới sự hướng dẫn của PSG. TS. Chu Việt Hà. Các số liệu và tài liệu trong luận văn là trung thực và chưa được công bố trong bất kỳ công trình nghiên cứu nào. Tất cả những tham khảo và kế thừa đều được trích dẫn và tham chiếu đầy đủ.

Thái Nguyên, tháng 10 năm 2020 **Tác giả**

Meephonevanh VAXAYNENG

LỜI CẢM ƠN

Trước hết, tôi xin được tỏ lòng biết ơn sâu sắc tới **PGS.TS. Chu Việt Hà**, người đã tận tình động viên, giảng dạy, chỉ bảo, hướng dẫn và định hướng cho tôi trong suốt quá trình học tập và thực hiện luận văn.

Xin chân thành cảm ơn Ban chủ nhiệm khoa Vật lý Trường Đại học Sư phạm Thái Nguyên đã tạo điều kiện thuận lợi về cơ sở vật chất cho tôi trong suốt quá trình thí nghiệm.

Tôi xin gửi lời cảm ơn tới học viên cao học **Lục Thị Tuyến** là người bạn cùng nhóm nghiên cứu đã luôn nhiệt tình hỗ trợ, hướng dẫn, hợp tác và cho tôi những lời khuyên quý báu để tôi vững bước trong suốt quá trình học tập và hoàn thành luận văn của mình.

Xin cảm ơn các bạn học viên cao học Vật lý khóa 26B (2018 - 2020) đã hỗ trợ tôi trong suốt quá trình học tập và thực hiện luận văn.

Cuối cùng, tôi cảm ơn gia đình, bạn bè, các đồng nghiệp đã động viên giúp đỡ tôi hoàn thành luận văn này.

Thái Nguyên, tháng 10 năm 2020 **Tác giả**

Meephonevanh VAXAYNENG

MỤC LỤC

LỜI CAM ĐOAN	i
LỜI CẢM ƠN	ii
MỤC LỤC	iii
DANH MỤC CÁC TỪ VIẾT TẮT TRONG LUẬN VĂN	v
DANH MỤC CÁC HÌNH	vi
MỞ ĐẦU	1
1. Lý do chọn đề tài	1
2. Mục tiêu nghiên cứu	3
3. Phạm vi nghiên cứu	3
4. Phương pháp nghiên cứu	3
5. Đối tượng nghiên cứu	4
6. Nội dung nghiên cứu	4
7. Cấu trúc của luận văn	4
Chương 1: TỔNG QUAN VỀ HIỆU ỨNG PLASMON VÀ VẬT	LIĘU
PLASMONIC	5
1.1. Hiệu ứng plasmon trong các cấu trúc nano kim loại	5
1.1.1. Sự tạo thành các plasmon bề mặt	6
1.1.2. Tần số plasmon và độ dài lan truyền của sóng plasmon	7
1.1.3. Sự kích thích các plasmon bề mặt	11
1.2. Nguyên tắc tạo thành và điều khiển các plasmonic hoạt động	13
1.2.1. Sự điều khiển ánh sáng tới	13
1.2.2. Sự thay đổi hàm điện môi của môi trường xung quanh	15
1.2.3. Thay đổi mật độ điện tích và hàm điện môi của vật liệu plasmonic	18
1.2.4. Điều khiển khoảng cách giữa các hạt	20
1.2.5. Điều khiển tính đối xứng của cấu trúc nano plasmonic	22
1.2.6. Đánh giá hiệu suất của điều khiển Plasmonic hoạt động	22
1.3. Một số cấu trúc plasmonic hoạt động	24
1.3.1. Cåm biến plasmonic	24
1.3.2. Tán xa Raman tăng cường bề mặt có thể điều chỉnh	27

KẾT LUẬN CHƯƠNG 1
Chương 2: THỰC NGHIỆM
2.1. Các phương pháp chế tạo vật liệu
2.1.1. Kỹ thuật deposit chế tạo các màng nano bạc bằng phương pháp bốc bay
chùm điện tử
2.1.2. Chế tạo đế SERS là cấu trúc nano bạc dị hướng trên giấy lọc bằng phương
pháp hóa khử
2.1.3. Nghiên cứu tăng cường tán xạ Raman bởi các đế SERS là cấu trúc nano
bạc trên giấy lọc
2.2. Các phép đo thực nghiệm
2.2.1. Phương pháp kính hiển vi điện tử quét (SEM) nghiên cứu vi hình thái
2.2.2. Phép đo phổ hấp thụ
2.2.3. Kính hiển vi huỳnh quang40
2.2.4. Quang phổ tán xạ Raman41
KẾT LUẬN CHƯƠNG 2
Chương 3: KẾT QUẢ VÀ THẢO LUẬN45
3.1. Nghiên cứu tính chất plasmonic trên các màng nano bạc45
3.1.1. Kết quả chế tạo các màng nano bạc trên để thủy tinh45
3.1.2. Tính chất plasmonic của các màng nano bạc46
3.2. Tính chất plasmonic của các đế SERS là cấu trúc nano bạc dị hướng trên
giấy lọc51
3.2.1. Kết quả chế tạo đế SERS là cấu trúc nano bạc dị hướng trên giấy lọc51
3.2.2. Nghiên cứu các plasmonic hoạt động trên việc khảo sát tăng cường tán xạ
Raman của Melamine trên các đế SERS đã chế tạo54
3.2.3. Các giới hạn phát hiện đối với Melamine56
KẾT LUẬN CHƯƠNG 3
KÊT LUẬN
TÀI LIỆU TH AM KHẢO61
PHỤ LỤC

DANH MỤC CÁC TỪ VIẾT TẮT TRONG LUẬN VĂN

LSPR	: Localized Surface plasmon resonance (Công hưởng plasmon
	bề mặt cục bộ)
PDMS	: Polydimethylsiloxane
SEM	: Scanning Electron Microscope (Kính hiển vi điện tử quét)
SERS	: Surface enhanced Raman spectroscopy (Quang phổ Raman
	tăng cường bề mặt)
SP	: Surface plasmon (Plasmon bề mặt)
SPP	: Surface Plasmon polariton (Sự kết hợp của plasmon bề mặt
	với photon ánh sáng tới)
SPR	: Surface plasmon resonance (Cộng hưởng plasmon bề mặt)
TE	: Transverse electric (Phân cực điện ngang)
TM	: Transverse magnetic (Phân cực từ ngang)
UV	: Ultra violet (Tử ngoại)

DANH MỤC CÁC HÌNH

Hình 1.1.	Các mức năng lượng của điện tử trong kim loại5
Hình 1.2.	Sự tạo thành plasmon bề mặt trên các hạt nano kim loại7
Hình 1.3.	a) Minh họa sóng plasmon bề mặt tại mặt phân cách giữa một kim
	loại và vật liệu điện môi có các điện tích kết hợp và b) Độ xuyên
	sâu của trường plasmon vào kim loại và điện môi8
Hình 1.4.	Các hình chiếu vecto sóng của một sóng tại mặt phân cách giữa hai
	môi trường9
Hình 1.5.	Đường cong tán sắc của các plasmon bề mặt. Ở giá trị k thấp,
	đường cong tán sắc của các plasmon trùng với đường tán sắc của
	photon9
Hình 1.6.	Sự kích thích Plasmon bề mặt: a. Cấu hình Kretschmann, b. Cấu
	hình Otto11
Hình 1.7.	Kết hợp pha ánh sáng với SPP bằng cách sử dụng cách tử để tạo ra
	các plamonic hoạt động15
Hình 1.8.	Minh họa các điện tích phân cực xung quanh một thanh nano kim
	loại gây ra bởi hai môi trường xung quanh với các hằng số điện môi
	khác nhau. Sự gia tăng lượng điện tích phân cực cảm ứng là do
	hằng số điện môi lớn hơn của môi trường18
Hình 1.9.	a) Cảm biến với các cấu trúc plasmonic hoạt động và bước sóng
	cực đại LSPR được vẽ theo thời gian là peaceodulin trải qua những
	thay đổi về hình dạng, được gây ra bởi việc bổ sung các ion Ca^{2+} tự
	do và tác nhân tạo chelat, EGTA, cho các ion Ca^{2+} (a, b); và (c) Phổ
	dập tắt của lớp hạt nano Au dày đặc không làm biến dang (trái) và biến
	dạng12,8% (phải) được ghi dưới các phân cực kích thích khác nhau25
Hình 1.10.	Điều chế thiết bị hoạt động tán xạ Raman tăng cường bề mặt: a) Sơ
	đồ hiển thị thiết bị hoạt động tán xạ Raman tăng cường bề mặt bao
	gồm một màng nanoplasmonic biến dạng dưới điều khiển khí nén;
	b) Sự thay đổi của mức tăng tán xạ Raman tăng cường bề mặt điều
	chỉnh cộng hưởng plasmon29

Hình 2.1.	Sơ đồ nguyên tắc lắng đọng vật liệu bằng phương pháp bốc bay chùm điện tử
Hình 2.2.	Cấu tạo một màng nano kim loại bạc được chế tạo bằng phương pháp bốc bay chùm điện tử
Hình 2.3.	Minh họa các bước chế tạo đế SERS là cấu trúc nano bạc dị hướng trên giấy lọc.
Hình 2.4.	Sơ đồ quy trình chế tạo đế SERS là cấu trúc nano bạc dị hướng trên giấy lọc
Hình 2.5.	Sơ đồ khối của kính hiển vi điện tử quét: (1) Súng điện tử, (2) Thấu kính điện từ, (3) Mẫu đo, (4) Bộ phát quét, (5) Đầu thu, (6) Bộ khuếch đại, (7) Đèn hình
Hình 2.6.	Sơ đồ hệ đo hấp thụ quang UV-Vis
Hình 2.7.	 a) Sơ đồ nguyên lý của kính hiển vi huỳnh quang cấu hình cơ bản và b) cấu hình eni
Hình 2 8	Giản đồ các mức nặng lượng dạo động 43
Hình 3.1.	Ảnh chup các màng nano bac được làm trên để thủy tinh với đô dày
	khác nhau
Hình 3.2.	Ånh hiển vi điện tử quét (SEM) của bề mặt màng nano bạc45
Hình 3.3.	Đặc trưng phổ huỳnh quang của các hạt nano OB47
Hình 3.4.	Phổ bất đẳng hướng huỳnh quang của các hạt nano OB dưới bước
	sóng kích thích 532 nm ở nhiệt độ phòng47
Hình 3.5.	Minh họa thí nghiệm quan sát huỳnh quang của hạt nano OB trên
	màng nano bạc47
Hình 3.6.	Mô tả sóng plasmon được kích thích bởi một lưỡng cực dao động là
	chất phát quang, trong trường hợp này là hạt nano OB48
Hình 3.7.	Ảnh huỳnh quang một hạt nano OB trên các màng bạc độ dày
	khác nhau
Hình 3.8.	Cường độ phát xạ tại ví trí hạt theo các độ dày màng nano bạc
	khác nhau
Hình 3.9.	Sự phụ thuộc của cường độ phát xạ của các hạt nano OB trên các
	màng bạc theo độ dày của màng50

Hình 3.10.	Độ dài truyền plasmon trên các màng nano bạc độ dày khác nhau	
	với bước sóng tới 560 nm	50
Hình 3.11.	Độ dài lan truyền sóng plasmon bề mặt trên biên phân cách giữa	
	điện môi không khí và màng bạc với độ dày 30 nm (hình trái) và	
	100 nm (hình phải) theo các bước sóng khác nhau	51
Hình 3.12.	Ảnh chụp đế SERS giấy bạc sau khi chế tạo được với tốc độ lắc là	
	2000 vòng/phút và thời gian lắc là 1 phút	51
Hình 3.14.	Giản đồ nhiễu xạ tia X của đế SERS giấy bạc sau khi chế tạo được	
	với tốc độ lắc là 2000 vòng/phút và thời gian lắc là 1 phút	53
Hình 3.15.	Phổ hấp thụ plasmon của đế SERS (giấy lọc - Ag)	54
Hình 3.16.	Phổ Raman đo được cho melamine (10 ⁻⁴ M) với các nồng độ	
	AgNO3 khác nhau.	55
Hình 3.17.	Sự phụ thuộc của cường độ tín hiệu SERS vào nồng độ của AgNO3	56
Hình 3.18.	(a) Phổ tán xạ Raman của Melamine trên đế (SERS) với các nồng	
	độ melamine khác nhau và (b) phổ Raman của bột melamine được	
	đo trên đế thủy tinh	57